

Match Plan Generation in Web Search with Parameterized Action Reinforcement Learning

Ziyan Luo*, Linfeng Zhao*, Wei Cheng*, Sihao Chen, Qi Chen, Hui Xue, Haidong Wang, Chuanjie Liu, Mao Yang, Lintao Zhang

discat@foxmail.com, zhao.linf@northeastern.edu, weicheng5993@foxmail.com, sihao@berkeley.edu {cheqi,xuehui,haidwa,chuanli,maoyang,lintaoz}@microsoft.com

Introduction

- Match plan generation is the key technology for large scale search engines
- Aims
 - 1. Good result quality (relevance)
 - 2. Short query response time
- Search engines use match plans to help retrieve relevant documents from billions of web pages

Microsoft Bing

Match Plan Generation Process

- ➤ After preprocessing, multiple posting lists are retrieved.
- The search engine scans them by executing a *match plan* which is composed of a sequence of *match rules*.
 - A match rule defines how the search engine matches documents over a period.
- It is made up of a **discrete** match rule type (e.g. $rule_A$) and several **continuous** stopping quotas (e.g. MCC < N).
- > Different match rules have different execution costs.

Match Plan Plays critical role in Web Search

- ➤ Help to retrieve top candidates in milliseconds.
- ➤ Decide the resource allocation for a query.
- ➤ Help to make the trade-off between *relevance* and *efficiency*.
- ➤ It's a secret for search companies.
 - ➤ No publication, no open source.
 - > Open toolkits (e.g. Lucene, Elasticsearch) do not have similar strategy.

Why generating match plans is hard?

- > The complexity of the system environment
 - Increasing number of match rule types and quota types
 - Diverse data distribution across a large number of r
 - Frequent updates of documents
 - Static design cannot dynamically re
- Multiple objects optimization
- Sequence decision making (instance)
- > Apply in thousands of machines and should be very fast

Need a learning method to dynamically generate corresponding match plan for each query.

Problem Formulation

A POMDP, a tuple of $(S,A,P,R,\Omega,O,\gamma)$

State

- Intermediate System Signals
- Query Embeddings, Statistics

Action
$$\mathcal{A} = \{(k, x) | k \in \mathcal{A}_d, x \in \mathcal{X}\} = \mathcal{A}_d \times \mathcal{X},$$

- **Discrete**: m types of predefined match rules + *Stop*
- **Continuous (shared)**: n dims of Quotas

Reward a scalar function weighted by:

- Performance: "Relevance Scores" (RS) of top k matched documents (From Bing's server)
- Latency: "Index Block Accesses" (IBA) of the match plan in the system

$$r_t = (\lambda_1 RS_t - \lambda_2 IBA_t) - (\lambda_1 RS_{t-1} - \lambda_2 IBA_{t-1}),$$

Environment Bing's index server (wrapped)

Could We Use Existed RL Algorithm?

Algorithm	DQN	TD3	SAC	PA-DDPG	What we expect
Discreate action	\checkmark	×	\checkmark	\checkmark	\checkmark
Continuous action	×	\checkmark	\checkmark	\checkmark	\checkmark
Discreate & Continuous action	×	×	×	\checkmark	\checkmark
Stability	×	×	\checkmark	×	\checkmark
Performance (better than production)	×	\checkmark	\checkmark	×	\checkmark

Complex action space

- Complex action: combine discrete and continuous spaces
- Huge action space 17,249,876,309 * 10^{105}

Instability in training

• Due to the lack of exploration

• Sampling deviation in traditional prioritized replay buffer

- Experiences whose rewards are in certain ranges are more likely to be sampled, making the agent behave poorly in some state subspaces
- Cause poor performance of learning the value function for some queries

Figure 4. The deviation in original PER.

Parameterized Action Soft Actor-Critic

Challenges

- Parameterized (discrete-continuous hybrid) action space
- Complex environment, large state/action space
- Sparse reward, partial observability

PASAC:

• 1. Optimize a **stochastic policy** of the *complete* action: discrete match rules (Categorical dist.) and continuous quotas (Gaussian dist.), meanwhile maximize both entropies

$$J_{\pi}(\phi) = \mathbb{E}_{s_{t} \sim D} \left[\mathbb{E}_{k_{t} \sim \pi_{\phi}} \left[\alpha_{d} \log \left(\pi_{\phi} \left(k_{t} | s_{t} \right) \right) - Q_{\theta} \left(s_{t}, k_{t}, x_{t} \right) \right] \right]$$

$$J_{\pi}(\psi) = \mathbb{E}_{s_{t} \sim D} \left[\mathbb{E}_{x_{t} \sim \pi_{\psi}} \left[\alpha_{c} \log \left(\pi_{\psi} \left(x_{t} | s_{t} \right) \right) - Q_{\theta} \left(s_{t}, k_{t}, x_{t} \right) \right] \right]$$

$$(4)$$

• 2. Soft Q network: estimate a joint soft Q-value function for the *complete* action

$$J_{Q}(\theta) = \mathbb{E}_{(s_{t}, x_{t}, k_{t}) \sim D} \left[\frac{1}{2} \left(Q_{\theta}^{t} \left(s_{t}, x_{t}, k_{t} \right) - y_{t} \right)^{2} \right]$$

Parameterized Action Soft Actor-Critic

Algorithm 1 Parameterized Action Soft Actor-Critic

```
input: Initial parameters \theta_1, \theta_2, \phi, \psi
                                                         \bar{\theta_1} \leftarrow \theta_1, \bar{\theta_2} \leftarrow \theta_2
   ♦ Initialize target net weights
   ♦ Initialize an replay buffer
   for each episode do
       for each environment step do
           ♦ Sample discrete action from the policy
                                                                                k_t \sim \pi_{\phi}(k_t|s_t)
           ♦ Sample parameter from the policy
                                                                           x_t \sim \pi_{\psi}(x_t|s_t)

    Store the transition

                                                   \mathcal{D} \leftarrow \mathcal{D} \cup (s_t, f(k_t), x_t, r_t, s_{t+1})
        end for
        for each gradient step do
           \diamond Sample a mini-batch from replay buffer \mathcal{D}

    Update the joint soft Q-function parameters

           \theta_i \leftarrow \theta_i - \lambda_O \nabla_{\theta_i} J_O(\theta_i) for i \in [1, 2]
           ♦ Update discrete policy weights
           \phi \leftarrow \phi - \lambda_{\pi_{\phi}} \nabla_{\phi} J_{\pi}(\phi)
           ♦ Update continuous policy weights
           \psi \leftarrow \psi - \lambda_{\pi, \iota} \nabla_{\iota \iota} J_{\pi}(\psi)

    Adjust temperature of discrete policy's entropy

           \alpha_d \leftarrow \alpha_d - \lambda_{\alpha_d} \nabla_{\alpha_d} J(\alpha_d)

    Adjust temperature of continuous policy's entropy

           \alpha_c \leftarrow \alpha_c - \lambda_{\alpha_c} \nabla_{\alpha_c} J(\alpha_c)
           ♦ Update target network weights
           \bar{\theta_i} \leftarrow \tau \theta_i + (1 - \tau) \bar{\theta_i} for i \in [1, 2]
        end for
    end for
output: Optimized parameters \theta_1, \theta_2, \phi, \psi
```

Implementation Details:

• **Exploration**: *double alpha tuning* to control the different exploration rate at the discrete and continuous action spaces

$$J\left(\alpha_{d}\right) = \mathbb{E}_{k_{t} \sim \pi_{\phi}^{t}} \left[-\alpha_{d} \left(\log \left(\pi_{\phi} \left(k_{t} | s_{t} \right) \right) + \bar{\mathcal{H}}_{d} \right) \right]$$
$$J\left(\alpha_{c}\right) = \mathbb{E}_{x_{t} \sim \pi_{\psi}^{t}} \left[-\alpha_{c} \left(\log \left(\pi_{\psi} \left(x_{t} | s_{t} \right) \right) + \bar{\mathcal{H}}_{c} \right) \right]$$

• **Recurrent state head**: dynamic LSTM to solve the Partially Observation problem

Stratified PER

We further proposed Stratified Prioritized Experience Replay (SPER) to address the "skewed prioritizing" issue:

- **skewed prioritizing**: experiences whose rewards are in certain ranges are more likely to be sampled, making the agent behave poorly in some state subspaces (some queries are inherently easy/hard to train)
- buffer stratifying: the replay buffer is divided into several bins (strata) according to reward range. The same number of samples are sampled from each bin by important sampling
- priority with TD-error and policy loss:
 - Transactions with <u>larger improvement potential</u> more likely to be sampled

$$p(s_t, a_t) = |\delta(s_t, a_t)| + \lambda \xi(s_t, a_t) + \epsilon_d,$$

- ➤ Q1. Does the proposed algorithm work better than the heuristic hand-crafted method tuned by engineers, or other RL algorithms?
- ➤ Q2. Is it more appropriate that we formulate the problem into a PARL problem, instead of discretizing the action space?
- > Q3. How is the improvement of our method in real search scenes?
- > Q4. How is the effect of applying SPER, and its components?
- ▶Q5. Does the proposed agent work well on other PARL benchmarking baselines?

Q1,2,3: Some comparative experiments with the same condition (3,000 test queries in total)

For different RL agents (Figure on ARI)

$$ARI = \frac{\sum_{i=1}^{|D|} (r_{agent}^{i} - r_{baseline}^{i})}{|D|}$$

For different RL agents (Table)

	DQN-20	DQN-100	D-SAC-20	D-SAC-100	PA-DDPG	TD3	PASAC	PASAC+SPER
ARI	-1.500	-1.957	0.210	0.460	-2.492	0.8384	1.280	1.912
Better	26.70%	27.43%	40.47%	49.30%	39.97%	41.90%	50.53%	60.10%
Equal	3.70%	4.50%	10.10%	6.03%	3.17%	4.67%	6.07%	11.60%

PASAC agent apparently outperforms other SOTA agents in both stability and efficiency in our scene

Performance Improvements for Production

- Significant reduction of index block accesses with relevance on-par
 - *Manually defined match plans cannot flexibly control the quotas*
- Match plans generated by model are typically **shorter** than production
 - Production rules are generalized to all queries in a category, leading to some redundancy rules for a single query

Experiments Ablation Study

Q4. How is the effect of applying SPER, and its components?

Benchmark Games

Q5: Does the proposed agent work well on other PARL benchmarking baselines?

We evaluate our agent in a broader context

Table 3: Average evaluation results (the average of all training rewards and final evaluation reward (repeated 100 times)) on benchmarks Platform-v0 and Goal-v0 with PA-DDPG [8].

Average Eval Return	PASAC	PASAC+SPER	PA-DDPG[8]
Platform-v0	0.9723	0.9727	0.3113
Goal-v0	43.11	43.85	-6.208

- PASAC performs much better than PA-DDPG.
- Stratified sampling may better fit the environment with skewed prioritizing issue if PER is applied.

Summary

- Formulate the match plan generation task to the general PARL framework
 - Propose a novel algorithm, Parameterized Action Soft Actor-Critic
 - To address the *skewed prioritizing* issue of PER, Stratified Prioritized Experience Replay (SPER) is applied
- Experiment results show that our learned match plan significantly outperforms the production baseline in terms of resource-saving
- Future works include further optimize the model reference time, and inventing more delicate strategies in exploring the parameterized action space

Thank you for your careful listening!